

Chemistry Standard level Paper 2

Wednesday 7 November 2018 (afternoc	n)
-------------------------------------	----

	Car	ndida	te se	ssion	า	num	nber	
					Ц			

1 hour 15 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all questions.
- · Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- A clean copy of the **chemistry data booklet** is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Answer all questions. Answers must be written within the answer boxes provided.

1. 3.26 g of iron powder are added to 80.0 cm³ of 0.200 mol dm⁻³ copper(II) sulfate solution. The following reaction occurs:

$$Fe(s) + CuSO_4(aq) \rightarrow FeSO_4(aq) + Cu(s)$$

(a)	(i)	Determine the limiting reactant showing your working.	[2]
	(ii)	The mass of copper obtained experimentally was 0.872g. Calculate the percentage yield of copper.	[2]
(b)	(i)	The reaction was carried out in a calorimeter. The maximum temperature rise of the solution was 7.5°C .	
		Calculate the enthalpy change, ΔH , of the reaction, in kJ, assuming that all the heat released was absorbed by the solution. Use sections 1 and 2 of the data booklet.	[2]

(Question 1 continued)

(ii)	State another assumption you made in (b)(i).	[1]

(iii) The only significant uncertainty is in the temperature measurement.

Determine the absolute uncertainty in the calculated value of ΔH if the uncertainty in the temperature rise was $\pm 0.2\,^{\circ}\text{C}$. [2]

(c) (i) Sketch a graph of the concentration of iron(II) sulfate, FeSO₄, against time as the reaction proceeds. [2]

(This question continues on the following page)

Turn over

	(ii)	Outline how the initial rate of reaction can be determined from the graph in part (c)(i).	[2]
	(iii)	Explain, using the collision theory, why replacing the iron powder with a piece of iron of the same mass slows down the rate of the reaction.	[2]
2.	Propan-2-	ol is a useful organic solvent.	
	(a) Drav	v the structural formula of propan-2-ol.	[1]
	(b) Calc	ulate the number of hydrogen atoms in 1.00 g of propan-2-ol.	[2]

(Question 2 continued)

(c)	Clas	sify propan-2-ol as a primary, secondary or tertiary alcohol, giving a reason.	[1]
(d)	(i)	State a suitable oxidizing agent for the oxidation of propan-2-ol in an acidified aqueous solution.	[1]
	(ii)	Deduce the average oxidation state of carbon in propan-2-ol.	[1]
	(iii)	Deduce the product of the oxidation of propan-2-ol with the oxidizing agent in (d)(i).	[1]

Turn over

3.	Bror	nine c	an form the bromate(V) ion, BrO ₃ ⁻ .	
	(a)	(i)	State the electron configuration of a bromine atom.	[1]
		(ii)	Sketch the orbital diagram of the valence shell of a bromine atom (ground state) on the energy axis provided. Use boxes to represent orbitals and arrows to represent electrons.	[1]
			Energy	
	(b)	Drav	v the Lewis (electron dot) structure for $\mathrm{BrO_3}^-$ that obeys the octet rule.	[1]

(Question 3 continued)

(c)	Predict, using the VSEPR theory, the geometry of the BrO ₃ ⁻ ion and the O–Br–O bond angles.	[3]
Geo	metry:	
Rea	son:	
O-E	sr–O angle:	
(d)	(i) Bromate(V) ions act as oxidizing agents in acidic conditions to form bromide ions.	
	Deduce the half-equation for this reduction reaction.	[2]
	(ii) Bromate(V) ions oxidize iron(II) ions, Fe ²⁺ , to iron(III) ions, Fe ³⁺ .	
	Deduce the equation for this redox reaction.	[1]

Turn over

Properties of elements and their compounds can be related to the position of the elements in the periodic table. Explain the decrease in atomic radius from Na to Cl. [2] Explain why the radius of the sodium ion, Na⁺, is smaller than the radius of the (b) (i) oxide ion, O²⁻. [2] (ii) State a physical property of sodium oxide. [1] 5. This reaction is used in the manufacture of sulfuric acid. $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ $K_c = 280 \text{ at } 1000 \text{ K}$ (a) State why this equilibrium reaction is considered homogeneous. [1]

(Question 5 continued)

Predict the direction of the reaction showing your working.	[3]
oic acid, CH ₃ CH ₂ CH ₂ COOH, is a weak acid and ethylamine, CH ₃ CH ₂ NH ₂ , is a weak base.	
State the equation for the reaction of each substance with water.	[2]
oic acid:	
mine:	
Explain why butanoic acid is a liquid at room temperature while ethylamine is a gas at room temperature.	[2]
	[4]
	[2]
	[2]
5	ic acid, $CH_3CH_2CH_2COOH$, is a weak acid and ethylamine, $CH_3CH_2NH_2$, is a weak base. State the equation for the reaction of each substance with water.

(This question continues on the following page)

Turn over

(c))	St	ate	th	e fo	orm	ıula	a of	f th	e s	salt	fo	rm	ed	wh	en	bu	tan	oic	ac	id r	ead	cts	wit	h e	thyl	am	ine	٠.		[1]
																							• •		• •		• •		• •	 • •	
	• •	• •			• •			• •	• •	• •	• •				• •		• •	• •			• •				• •		• •			 	

7. Consider the following Hess's law cycle:

$$CH_2 = CH_2(g) + H_2(g) \xrightarrow{Step 1} CH_3CH_3(g)$$
 $+ \frac{7}{2}O_2(g)$
 $Step 2$
 $+ \frac{7}{2}O_2(g)$
 $Step 3$
 $2CO_2(g) + 3H_2O(l)$

(a)	Identify the type of reaction in step 1.	[1]
(b)	Calculate the standard enthalpy change, ΔH^\ominus , of step 2 using section 13 of the data booklet.	[1]
(c)	Determine the standard enthalpy change, ΔH^{\ominus} , of step 1.	[1]

[2]

(Question 7 continued)

(d)	Suggest one reason why the calculated value of ΔH^{Θ} using Hess's Law in part (c) can
	be considered accurate and one reason why it can be considered approximate.

Accurate:					
Annrovimo	to:				
Approxima	le.				

Please **do not** write on this page.

Answers written on this page will not be marked.

12FP12